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Abstract: Linear regression is widely used in the calibration of chromatographic assays even in conjunction with some 
chromatographic detectors which show significant non-linearity in their response characteristics. A calibration routine, 
based upon the curve y = axlnx + bx + c is presented which describes the non-linear behaviour of some chromatographic 
systems, including electron capture, nitrogen-phosphorus and UV photometric detectors, and gives comparable results 
to weighted linear regression with assays showing linear concentration versus response relationships. The ratio of the 
coefficients a and b in the equation allows quantification of the deviation from linearity and provides a more sensitive 
indicator of linearity than the correlation coefficient often quoted with linear regression. 
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Introduction 

The accuracy of the results from a chromato- 
graphic analysis is dependent upon the cali- 
bration curve adequately describing the actual 
concentration versus response characteristics 
of the assay. Regressions are widely used to 
define these calibration curves in mathematical 
terms now that the use of computer based 
integrators has become widespread and there is 
no longer any need to perform the associated 
calculations by hand. However, in any cali- 
bration there will be differences between the 
experimentally derived calibration function 
and the actual response which will lead to a 
concentration dependent bias in the assay. 

One cause of these differences is due to the 
normal experimental errors related to the 
calibrators which give rise to an uncertainty in 
the coefficients of the regression line and so 
results in a degree of variability between 
individual calibration curves. This variability 
can be minimized by optional use of weighting 
factors as well as the number and distribution 
of calibrators and it is this aspect of calibration 
with linear regressions which has been concen- 
trated on in the literature [l--7]. 

A second source of bias in an assay can be 
due to the mathematical function used to 

describe the calibration curve which may only 
be an approximation to the actual concen- 
tration versus response characteristics of the 
assay. Linear calibration functions are 
employed in the majority of chromatographic 
assays that appear in the literature. However, 
it has been reported that some degree of non- 
linearity in the sensitivity, i.e. response per 
unit concentration of analyte, is present in 
some detectors used in high-performance 
liquid chromatography (HPLC) and the non- 
linearity of the response from electron capture 
detectors (ECD) used in gas chromatography 
(GC) can be quite marked [&lo]. In such 
cases a concentration dependent bias will 
appear in the estimated values if a linear 
calibration is used. 

Regressions based upon non-linear equations 
such as y = ax* + bx + c, y = QX”, In(y) = 
a[ln(x)]* + bin(x) + c have appeared in the 
literature, as well as more complex polynomial 
expressions, but often lack critical evaluation 
[ll-131. In order to obtain optimum results the 
regression should not only match the actual 
shape of the response curve but also include 
appropriate weighting factors to compensate 
for the error distribution if it is non-homo- 
scedastic. Non-linear calibration routines are 
often included as part of the capabilities of 
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chromatographic data systems but may only be 
suitable for assays covering a small dynamic 
range and exhibiting a marked degree of 
curvature. As these regressions are often only 
available in their unweighted forms they 
usually impart no improvement in the accuracy 
of estimated data when compared with 
weighted linear regressions in assays covering 
wide dynamic ranges and showing only small 
deviations from linearity. Indeed it will be 
shown in this study that some compensation for 
non-linearity using the weighted linear re- 
gression, y = bx + c is provided in the esti- 
mates of the coefficients b and c. 

Despite improvements made with the 
variable-frequency constant-current mode of 
operation non-linear response still remains a 
characteristic of the ECD used in GC [14, 151. 
Figure 1 shows a plot of the detector sensitivity 
versus the logarithm of the concentration taken 
from an unpublished GC assay using ECD for 
a drug in plasma. It can be seen that there 
appears to be a linear correlation between the 
two parameters and similar results have been 
reported elsewhere [9]. A study concerning the 
GC ECD analysis of polychlorinated biphenyls 
investigated the suitability of various cali- 
bration functions and concluded that second- 
order curves (y = ax2 + bx + c) fitted the data 
best [lo]. However, the raw data also appears 
to exhibit a linear relationship of the form 

accepted criteria for linearity [8]. Again a 
linear relationship was observed between the 
sensitivity and the logarithm of the con- 
centration. 

Similar correlations have also been observed 
in this laboratory with assays involving either a 
UV detector in conjunction with HPLC or a 
nitrogen-phosphorus detector (NPD) and GC, 
except that in these cases the sensitivity in- 
creased with concentration as can be seen in 
the example of a GC assay in Fig. 2. 

In all these examples the sensitivity 
(response/concentration, yl,) can be defined in 
terms of the concentration (x) according to: 

yi, = alnx + b, 

hence 

y = uxlnv + bx, 

where a and b are constants. If allowance is 
also made for an intercept (c) at zero concen- 
tration the equation becomes: 

y = axlnv + bx + c. 

It is the evaluation of the equations relating to 
this calibration function in simulated and real 
analytical situations which is described in this 
communication. 

shown in Fig. 1. 
Ultra-violet photometric detectors used in 

HPLC are generally considered to show excel- 
Equations Describing the Regression y = dnx 

lent linearity of response versus concentration. 
+ bx + c 

However, a critical evaluation of such de- Estimates of the three coefficients a, b and c 
tectors revealed that the sensitivity can fall by describing the calibration curve can be ob- 
as much as 5% over a lo-fold increase in tained using the following expressions: 
analyte concentration though still be within the 

1.2, 
I 
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Figure 2 
Figure 1 The change in sensitivity (normalized peak height ratio) of 
The change in sensitivity (normalized peak height ratio) of a nitrogen specific detector as a function of plasma drug 
an ECD as a function of plasma drug concentration in a concentration in a GC assay (intra-assay data of six 
GC assay (mean of six calibration curves). determinations). 
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Tl T2 T3 
a=-_b=--_ndc=- 

T4 T4 T4 ’ 

where the terms Tl-T4 are given by: 

Tl = Cwxylnx(Cw~)~ + Cwx21nx~wxy:ycw + 
cwx1nucwx2cwy - ~wxylnxcw~wx2 - 
Cwx21nxCwxCwy - CwxlnxCwxCwxy; 

T2 = (cwxlnx)~~wxy + cwx~wy~wx~(lnx)~ + 
Cwx*lnxCwxylnxCw - CwxyCw~wx2(lnx)* - 
Cwx*lnxEwxlnxCwy - CwxlnxCwxylnxCwx; 

T3 = (~wx*lnx)*cwy + ~wx2~wxlnx~wxylnx 
+ ~wxcwx2(lnx)2cwxy - 
~wx2cwycwx*(lnx)* - ~wx%x~wxlnx~wxy 
- cwx~wx%x~wxylnx; 

T4 = (~w~)~Cwx~(lnx)~ + (Cwxlnx)2Xwx2 + 
~w(~wx%x)2 - c *1 c 1 c wx ‘lx wxnx wx - 
cwxcwx21nx~wxlnx - cwcwx*cwxQlx)2. 

A weighting factor (w) was applied to the 
square of the residuals when deriving the 
equations above. In many assays, covering a 
wide dynamic range, the precision is propor- 
tional to the concentration (x) and in these 
cases it is appropriate to apply a weighting 
factor of ‘IX2 [ 11. Substituting this value into the 
equations introduces the term n (number of 
calibrators) and simplifies the terms Tl-T4 as 
follows: 

Tl = C(ylnx)/x(C1/x)2 + Ch~~~/xC’/x* + 
nC(lnx)/x~~/x2 - nC(ylnx)/xC’/x~ - 
~1nxc’/xcy/x* - ~(lnx)/xc’/xcy/x; 

T2 = [C(lnx)/x12CY/x + ~‘/~C~/x*C(lnx)~ + 
Dlxc(ylnx)/xc’/x* - cy/xc’/x*c(lnx)* - 
~lnxC(Inx)/xCy/x2 - ~(lnx)/xc(ylnx)/x~‘/x; 

T3 = (clnx)*~“‘/x2 + nC(lnx)/xC(ylnw)/x + 
c’/xc(lnx)Wx - n~~lx5@x)2 - 
D’x~(lnx)/xcy/x - ~‘/xc1nx~(ylnx)/x; 

T4 = (~‘/x)“C(lnx)’ + n[C(lnx)/~]~ + 
C’/x2(clnx)* - clnxc(lnx)/xz:‘/x - 
~‘/xclnx~(lnx)/x - nC’/x*~(lnx)2. 

It is in this form that the regression has been 
used and evaluated. 

The slope of the line y = axlnx + bx + c at 
any concentration x, i.e. the sensitivity, is 
given by: 

dy - = a(1 + lnx) + 6. 
dx 

Hence the change in sensitivity between two 
concentrations x1 and x2 is the difference in 
slope at these two concentrations. For con- 
venience, if x2 = 10x’ and the result is ex- 
pressed as a percentage of the underlying 
linear slope (b), the degree of non-linearity, or 
curvature, over a lo-fold increase in concen- 
tration can be described by: 

Curvature = 

y [a(1 + lnx2) + b - a(1 + lnx,) - b] 

230a 
= - 00. 

b ’ 
Once a calibration curve has been estab- 

lished it is normal analytical practice to esti- 
mate the concentrations of the unknowns (x), 
from the measured responses (y), by re- 
arrangement of the regression equation. Un- 
fortunately, there appears to be no direct 
transformation of the equation y = axlnx + bx 
+ c to enable direct calculation of x given 
values of y. However, values can be obtained 
by the Newton-Raphson iteration procedure 
[6], described below, which rapidly converges 
to a consistent value after approximately three 
iterations. 

Consider the equation y = axlnx + bx + c 
and let the successive approximations to the 
solution be x = Zbl (where j = 0, 1,2 . . . and 
represents the number of approximations). 
The Newton-Raphson method allows the 
following estimate to be made for Zb+‘l from 
the previous estimated value Zbl: 

f(ZV1) zLi+‘l = ZIil - ~ 
f’(ZVl) ’ 

where the functions of Z are given by 

f(Zbl) = aZbllnZb1 + bZb] + c - y 

f’(Zbl) = a(1 + lnZV1) + b. 

An initial value z co1 of ylb is used and the 

interaction is terminated when: 

Izb+‘l - zq <o ooool 
(zlil( . . 
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One problem which was identified with this 
approach is that, at concentrations approach- 
ing zero, negative values of Zb’l can be 
generated which cause the calculation to fail on 
the subsequent pass because of the terms In ZLil 
in the equation. This was solved by substitution 
of small positive values when the estimates 
were negative. The iteration can therefore be 
used to determine estimates between zero and 
the lowest calibrator (limit of quantification) 
although such extrapolation can be subject to 
errors with any regression and values so 
obtained should not be used in pharmaco- 
kinetic calculations [17]. Negative values of x 
cannot be determined with this equation but 
these have no real meaning within analytical 
chemistry and thus do not present a limitation 
on its use. 

Methods 

Simulations 
Computational errors were checked using 

two ideal concentration (x) versus response (y) 
curves. A simple linear relationship (y = 10x 
+ 1) was used for the first and this was 
modified for the second so as to introduce a 
deviation in the sensitivity, over a lOOO-fold 
concentration range, of f 10% in accordance 
with the model previously described. [(~&LX)/ 
(31nlO) + 9x + 1, such that as x + 1 the 
equation reduces to y = 9x + 1 and as x -+ 
1000 reduces to y = 11x + 11. Twelve pairs of 
X, y values corresponding to points distributed 
along the curves were entered into the re- 
gression equations described and estimates of x 
back calculated using the iteration. Single 
precision (seven-digit) numbers were used 
throughout. 

The calibration functions were tested further 
using Monte Carlo simulations [S] again using 
data based on the two ideal curves. This time 
random errors were introduced such that indi- 
vidual values of the response, y,, at each 
concentration, X, were generated according to 
yi = y + Gs, where G is a gaussian or normally 
distributed random number (mean and stan- 
dard deviation = 0 t 1) and s is the standard 
deviation of the measured response at a given 
concentration and was defined as s = 0.17 + 
0.03~. This precision profile was chosen to 
represent an assay with an intra-run relative 
standard deviation (RSD) of about ?3% over 
most of its working range, increasing to +20% 
at the limit of quantification, i.e. when x = 1. 

Ten simulated analytical runs were performed 
for each concentration versus response curve, 
each using 12 calibrators. The mean inter-assay 
calibration bias was determined over the assay 
range by comparison of the individual cali- 
bration curves with the actual response curves 
as previously described [8]. In addition, the 
mean calibration bias, defined as the mean of 

the moduli of the differences between the 
actual and estimated concentrations, was also 
calculated as this parameter gave a better 
estimate of the likely bias associated with an 
individual calibration curve. Simulations were 
also performed with the same raw data using 
weighted linear and quadratic regressions 
(weighting factor = ‘/X2) for comparison. 

Real Analyses 

Two unpublished assays of drugs in plasma 
were selected to test the calibration routine 
under real analytical conditions. A GC ECD 
assay with a marked degree of non-linearity 
(see Fig. 1) was chosen as the first, and an 
HPLC UV assay exhibiting a high degree of 
linearity of the response was chosen as the 
second. Fortified samples of blank human 
plasma were analysed in place of unknowns on 
six separate occasions for each assay and new 
calibration curves were generated for each run 
using sets of calibrators prepared indepen- 
dently from the fortified blanks. Estimates of 
the inter-assay precision and accuracy were 
made from the results obtained with the new 
regressions, weighted linear regression and 
weighted quadratic regression for comparison 
using the same raw chromatographic data, i.e. 
peak height ratios compared with an internal 
standard. 

Results and Discussion 

No computational errors (<O.OOl%) were 
found in the estimates of the concentration 
obtained by back calculations using data points 
lying on the two curves in the simulation, 
demonstrating the validity of the iterative 
calculation even when wide dynamic ranges are 
involved, and the computation limited to single 
precision numbers. 

The precision profile chosen for the Monte 
Carlo simulations was similar to that observed 
in many assays used in this laboratory, and the 
equation describing precision in terms of a 
limiting value plus a concentration dependent 
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term has also been reported elsewhere [19,20]. 
Comparison of the Monte Carlo simulations 
for the linear concentration versus response 
curve (Table 1) shows that use of the new 
regression adds between 0.0 and 0.4% to the 
estimates of the mean calibration bias of the 
results depending upon the concentration but 
has negligible effect on the inter-assay com- 
ponent of the precision. An increase in the 
mean calibration bias was expected due to the 
greater uncertainty in the determination of 
three coefficients in the new equation rather 
than just two coefficients in the linear re- 
gression using the same data. However, the 
differences were less than those estimated 
when a less optimal distribution of calibrators 
(2 x 1,4,16,60,250,1000) was used for the 
weighted linear regression. Increasing the 
number of calibrators relative to those used in 
linear regression would also decrease the 
uncertainty. 

lations the calibration bias was limited to about 
+6% in the estimates from weighted linear 
regression, some compensation for curvature 
being provided by the estimates of the coef- 
ficients b and c in the regression. 

Once a degree of curvature (7.4% per 
decade increase in concentration) was intro- 
duced into the response function then a sig- 
nificant improvement in the accuracy of the 
estimated results could be seen in the new 
regression compared with weighted linear 
regression (Table 2). Virtually no difference 
was observed in the performance of the new 
regression in the simulations between curved 
and linear concentration versus response 
profiles. It is interesting to note that although 
the slope of the concentration versus response 
curve changed by 510%) from 9 at x = l-11 to 
x = 1000, over the assay range in the simu- 

The GC ECD assay evaluated showed a 
marked degree of non-linearity and the valid- 
ation results (Table 3) clearly demonstrate that 
the new regression describes the response 
characteristics much better than linear or 
quadratic regressions. Values of the mean 
accuracy lie within 96-104% of the target value 
over most of the assay range and include 
experimental errors in addition to those due to 
the calibration function. A plot of the residuals 
from the mean data from the six calibration 
curves also shows the new regression to fit the 
data within +5% over a dynamic range of 1000 
(Fig. 3). This fit can be further improved by 
omission of the highest calibration point which 
shows significant deviation from the curve in 
Fig. 1 because of loss of chromatographic 
resolution between the drug and internal stan- 
dard at this concentration. An estimate of the 
deviation from linearity from the mean esti- 
mates of the coefficients a and b shows that the 
sensitivity of the ECD fell by 22% per decade 
increase in concentration. This value of 
curvature contrasts greatly with the impression 
created by a correlation coefficient of 0.9969 
obtained by application of a linear regression 
to the same data. 

Comparison of the validation results from an 
HPLC UV assay of a drug in plasma (Table 4) 
shows similar errors using either weighted 

Table 3 
Comparison of the accuracy and precision of the results from a GC ECD assay using the 
weighted regressions y = bx + c and y = uxlnx + bx + c and y = ax’ + bx + c 

Drug added (ng ml-‘) I 

Estimated assay bias (%)* 

II III 

1.03 -25.9 f 10.1 -9.4 f 6.2 -18.3 f 8.4 
2.59 21.4 + 6.7 -3.1 zk 3.7 10.7 + 5.2 
5.13 37.2 + 4.2 3.7 f 2.2 20.6 zk 2.6 

10.4 31.9 f 3.5 2.1 * 1.3 14.4 f 2.0 
26.0 19.3 + 4.6 0.6 f. 3.0 3.5 + 2.9 
51.9 7.3 f 2.1 -1.6 + 1.7 -6.3 + 1.2 

104 -4.3 + 2.2 -2.5 + 2.4 -14.7 + 2.8 
260 -19.1 f 1.6 -2.6 f 2.6 -23.3 + 2.1 
521 -30.9 f 2.8 -3.3 f 3.6 -26.6 +_ 3.5 

*Mean and standard deviation of six independent analytical batches each using 14 
calibrators (2 x 1, 3, 10, 31, 102, 307, 1022 ng ml-‘). 

I: y = bx + c, b = (2.013 + 0.040) x lo-‘, c = (2.120 + 0.459) x lo-*. 
II: y = axlnx + bx + c, a = (-3.436 + 0.352) x lo-‘, b = (3.582 + 0.178) x lo-*, c = 

(2.948 + 4.244) x lo-‘; curvature = 230alb = - 22% per decade increase in concentration. 
III: y = ax’ + bx + c, a = (-1.244 f 0.117) x W5, b = (2.363 f 0.057) x 1O-2, c = 

(1.654 f 0.438) x lo-*. 
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Figure 3 
Residuals plotted against plasma drug concentration for a 
non-linear GC assay with ECD using the regression y = 
axle + bx + c [range l-1000, (x); range l-300, (*)I. 

Table 4 

* 
x x 

% -_*-x-x-* * 
* x 
x 

I I I I 
1 10 100 

Plasma cont. (ng ml-‘) 

Figure 4 
Residuals plotted against plasma drug concentration for a 
linear HPLC assay with UV detection comparing the 
weighted regressions for y = bx + c, (x) agains; y = &lnx 
+ bx + c, (*). 

Comparison of the accuracy and precision of the results from a HPLC UV assay using the 
weighted regressions y = bx + c, y = axlnx + bx + c and y = ax’ + bx + c 

Estimated assay bias (%)* 

Drug added (ng ml-‘) I II III 

1.0 -5.0 f 10.5 -5.0 + 10.5 -5.0 f 10.5 
2.5 0.3 + 6.4 -1.1 z!z 5.9 -0.4 f 7.1 
5.0 0.6 + 2.1 0.6 + 3.0 0.6 f 3.0 

10.0 2.2 f 1.9 1.8 f 1.9 1.8 ?c 1.9 
25.1 -0.1 + 1.6 -0.2 + 1.6 -0.3 k 1.7 
50.2 0.8 + 2.6 0.9 + 2.6 0.8 f 2.6 

100 0.9 + 1.6 1.1 f 1.4 1.1 + 1.4 

*Mean and standard deviation of six independent analytical batches each using 12 
calibrators (4 x 1, 10, 100, ng ml-‘). 

I: y = bx + c, b = (3.020 f 0.032) x lo-*, c = (8.320 + 2.31) x 10-s. 
II: y = axlnx + bx + c, a = (-2.06 + 3.94) x 10-4, b = (3.047 f 0.090) x lo-‘, c = 

(8.04 + 3.05) x 10e3; curvature = 230alb = -1.6% per decade increase in concentration. 
III: v = ux* + bx + c. a = (-1.69 + 4.85) x lo-‘, b = (3.030 + 0.047) x IO-a, c = 

(8.21 i 2.59) x lo-‘. \ 

linear or the new regression. A plot of normal- 
ized residuals of the mean responses of a 
calibration curve also shows little difference in 
the fit of the three regressions to the data (Fig. 
4). An estimate of the degree of non-linearity 
was made from the six calibration curves using 
the new regression which showed a decrease in 
sensitivity of 1.6% per decade increase in 
concentration, which was not significantly dif- 
ferent from zero, thus demonstrating the high 
degree of linearity of the assay. 

It is worth making a brief comparison of this 
new regression with the more familiar quad- 
ratic equation, y = ax2 + bx + c, sometimes 
used to compensate for non-linearity. The 
influence of the term ux2 is only significant 
over a short range at the highest concen- 
trations, whereas the term axlnv describes a 
departure from linearity which is the same over 
each order of magnitude of the assay range. 
Obviously, the choice of regression will be 
dependent upon the characteristics of the assay 
in question, but in the example given, using 

ECD the term uxlmt plainly describes the non- 
linear behaviour of the assay better than the 
term ax*. Although the quadratic equation 
allows direct calculation of unknown concen- 
trations via the equation x = (-b + [b2 - 
4u(c - y)]?/2)/2u there are limitations associ- 
ated with this expression. Firstly, large errors 
can arise if the regression is used to describe a 
linear function and the coefficient a is very 
close to zero. Secondly, it was not possible to 
back calculate the concentrations of the highest 
calibrators of the ECD assay as the poor fit of 
the regression at this level resulted in the term 
4u(c - y) becoming greater than b*. 

The non-linear concentration versus 
response model described in this communi- 
cation was based upon many such observations 
of assays used in this laboratory. However, this 
type of behaviour may not be solely due to the 
response characteristics of the detector. The 
previously reported non-linearity of HPLC UV 
photometric detectors [8] has not been seen in 
the current UV or fluorescent instrumentation 
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in this laboratory possibly due to improve- 
ments in instrument technology, but a similar 
apparent increase in sensitivity has been 
attributed to the poor chromatographic prop- 
erties of one analyte. In GC the fall in 
sensitivity observed with ECD is due to the 
detector as is the increase in sensitivity of 
about 5% per decade increase in concentration 
of the NPD. Another cause of such non- 
linearity may be due to the hardware or 
software of chromatographic data systems. 
Whatever the reason, this type of response 
characteristic is not unusual and, because it is 
reproducible, can be compensated for by the 
regression described here. 

The new regression has been presented 
primarily as a way to compensate for the type 
of non-linearity observed in some chromato- 
graphic systems. However, a case can be made 
for its more general use as a replacement for 
linear regression. Extra information about 
linearity is provided in a way that is readily 
understood by the analyst and is a worthwhile 
addition to the information concerning the 
sensitivity and intercept given by straight- 
forward linear regression, whereas a corre- 
lation coefficient close to 1, though often 
quoted as evidence of linearity, has no real 
meaning in analytical calibration [21]. The 
increase in uncertainty in definition of indi- 
vidual calibration curves compared with linear 
regression has been shown to be small and, in 
association with other experimental errors, 
would be difficult to detect in practice. One 
area in which the new regression may be useful 
is in monitoring the ageing of the rubidium 
ceramic beads of the NPD in GC. Normally the 
degree of non-linearity associated with this 
detector is 4% per decade increase in con- 
centration, but recently values in the range lo- 
20% have been observed in this laboratory. 
Experience may show that the change in 
linearity of this detector can be correlated with 
operational history and recoating of the 
ceramic bead with the rubidium salt. 

Although the mathematics are more com- 
plex than those associated with linear re- 
gression the use of computer based data 
processing renders these transparent to the 
analyst and the accuracy of the calculations has 
been demonstrated over a wide dynamic range 
despite the use of single precision numbers. In 
this work a weighting factor of ‘lx* was used 
throughout in conjunction with the regressions 
but the equations can be modified to accom- 

modate other weighting factors if these are felt 
appropriate. Initial work with this regression 
has been encouraging and it is being incorpor- 
ated into assays in which the distribution 
pattern of the normalized residuals is con- 
sistently in agreement with the pattern pre- 
dicted from simulations assuming that the 
response is described by the equation 
y = uxlnx + bx + c. Even when the degree of 
non-linearity is small, the use of the new 
regression may lead to better quality control of 
assays by providing a sensitive monitor of 
changes in linearity which could be predictive 
of column or detector failure due to ageing. 
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